Data selection and interferometric baselines

Rüdiger Gens
Data formats

- CEOS single look complex
 - does not require SAR processing
 - order deskewed (zero Doppler)

- CEOS level 0
 - frame based
 - requires SAR processing
Data formats

• Sky Telemetry format (STF)
 • swath data format
 • requires SAR processing
 • allows latitude constraints
 • flexible to cover any area of interest in azimuth direction
 • format of choice
Wavelength

- Wavelength determines penetration depth
- Shorter wavelengths are backscattered at the surface
- Longer wavelengths reach the topographic surface (sub-surface)
Polarization

- **Radarsat:**
 HH polarization better suited for sea ice

- **ERS:**
 VV polarization for observation of the oceans
Data availability

- **Repeat cycle**
 - ERS-1/2: 35 days
 - Radarsat: 24 days
 - JERS-1: 44 days

- **Time**
 - ERS-1/2: 1991 until present
 - Radarsat: 1995 until present
 - JERS-1: 1992 to 1998
Resolution

- best ground resolution
 - Radarsat: 8 m
 - ERS-1/2, ENVISAT: 30 m
 - JERS-1: 30 m

- coverage
 - Radarsat: 500 x 500 km (ScanSAR)
 - ERS-1/2: 100 x 100 km
 - ENVISAT: 100 x 100 km
 - JERS-1: 75 x 75 km
Precise state vectors

- available for ERS-1/2 data
 - German Aerospace Center (DLR), Germany
 - Technical University Delft, the Netherlands
- effect on DEM accuracy caused by baseline decorrelation smaller than one meter
Interferometric baseline

- different representations
 - length B and the orientation angle α
 - horizontal (B_y) and vertical (B_z) component
 - components (B_\parallel) and (B_\perp) component
Interferometric baseline

- applicability for applications (example ERS)

<table>
<thead>
<tr>
<th>Applications</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical InSAR limit</td>
<td>$< B_{\text{perp}} < 600$ m</td>
</tr>
<tr>
<td>Digital Terrain Models</td>
<td>150 m $< B_{\text{perp}} < 300$ m</td>
</tr>
<tr>
<td>Surface Change Detection</td>
<td>30 m $< B_{\text{perp}} < 70$ m</td>
</tr>
<tr>
<td>Surface Feature Movement</td>
<td>$< B_{\text{perp}} < 5$ m</td>
</tr>
</tbody>
</table>
Interferometric baseline

- critical baseline
 - for interferometric pairs with a perpendicular baseline B_\perp beyond a critical value, correlation vanishes because the spectral shift exceeds the pulse bandwidth
Interferometric baseline

- critical baseline
 - loss of all coherence

\[B_c = \frac{\lambda r}{2 R_y \cos^2 \theta} \]

- wavelength \(\lambda \)
- range \(r \)
- resolution in range \(R_y \)
- look angle \(\theta \)
Interferometric baseline

- perpendicular baseline component B_\perp can be used to describe the sensitivity of an interferometric pair to topographic elevation
- large parallel baseline component B_\parallel will produce a high background fringe rate due to “flat” topography – needs to be known quite accurately to get a topographic map with no cross-track tilt
Data selection

Descw
Radarsat baseline catalog

Radarsat-1 interferometric baseline catalog

This interface lets you search for available interferometric pairs in the ASF archive using a world map which has been divided in 5x5° grids. Grids for which interferometric pairs are available are highlighted in dark tones. Clicking on the individual grid cell will allow you to download the baseline information as a zipped text file and a zipped ArcGIS shape file. Baselines can also be searched using a text only version.

Beam mode: F1N1
 Orbit direction: Ascending

Latitude (deg):
Longitude (deg):

http://www.asf.alaska.edu/baselines/
Radarsat baseline catalog

RADARSAT-1: InSAR Coverage for ASF Station Mask
Example: Descending ST2 orbits with 24 days repeat cycle

Legend
- InSAR Pairs
 - 1
 - 2
 - 3
 - 4
 - 5
 - >5