Terrain correction and ortho-rectification

Rüdiger Gens

Why geometric terrain correction?

- remove effects of side looking geometry of SAR images
- necessary step to allow geometric overlays of remotely sensed data from different sensors and/or geometries

Backward geocoding

Backward geocoding

- DEM coordinates are transformed into the earth-centered rotating (ECR) Cartesian coordinate system
 - orbit modeled by second degree polynomial
 - orbit grid point for each DEM grid point needs to satisfy SAR range equation and SAR Doppler equation
 - Radarsat orbits might need substantial refinement using tie points

Forward geocoding

- DEM coordinates (latitude, longitude, height) conversion into SAR image coordinates (line, sample)
 - solving the Doppler shift equation – relates relative velocity between point on the Earth and satellite to measured frequency shift of returned radar pulses
 - shift equation only dependent on time
 - equation solved using Newton-Raphson iteration

Backward geocoding

- solution non-linear system
 - iteration along orbit for each DEM pixel
 - iteration results (image time and range coordinates) are linearly transformed into coordinate system of slant range image
 - resampling assigns image grey value of slant range image to output pixel of geocoded image
 - depending on the relation between DEM and radar resolutions interpolation methods important
 - bilinear interpolation appropriate (Small et al., 1997)

Forward geocoding

- generation of simulated SAR image
 - using ephemeris data as input to satellite model
 - using DEM information for a given location as input to Earth model
 - backscatter values from simple backscatter model
 - results in simulated SAR image in real SAR image geometry
Forward geocoding

- correlation of real and simulated SAR image
 - matching of points on a regular grid
 - calculation of mapping function that relates points in simulated and real image
- geocoding using mapping function
 - geolocating SAR image while correcting for terrain related distortions

Layover / Shadow masks

- can be derived from DEM
- useful to provide information about problem areas
 - shadow regions – no information available
 - layover and foreshortening – reduced spatial resolution

Ortho-rectification

Need

- During data acquisition the image is geometrically distorted due to sensor, platform and object characteristics.
- Evaluation, exploitation and comparison of remotely sensed images requires geometrically corrected data.
Sources of distortions

- Earth rotation
- Earth curvature
- Platform variations
- Terrain relief

Earth Rotation

Earh Curvature

Platform Variations

- Displacements due to sensor orientation
Platform Variations

- Displacements due to the relationship between the sensor and the earth’s surface

Effects of Terrain Relief

- Displacements caused by relief differences are not systematic. They cannot be predicted.

Effects of Terrain Relief

- Height or elevation differences result in “relief displacement”

Steps in Geometric Correction

1. Original image
2. Co-registration
3. Transformation
4. Resampling / Interpolation
5. Geocoding
Co-registration

- Coregistration can therefore be
 - Image-to-image
 - Image-to-map
 - Image with measured GCPs.

Image to image registration

Master image Slave image

Image to map registration

Transformation

- Transformation involves calculation of a mathematical function which fits the tie points optimally. This could be
 - First order polynomial (conformal, affine, bilinear)
 - Second order polynomial
 - Higher order polynomials

- Note: The term ‘georeferenced image’ is sometimes used for an image that has been transformed. At other times, the term is used synonymously with the term ‘geocoded image’
Polynomial Order

- 1st order: 6 parameters
 \[x = a_0 + a_1x + a_2y \]
 \[y = b_0 + b_1x + b_2y \]

- 2nd order: 12 parameters
 \[x = a_0 + \cdots + a_3x^2 + a_4xy + a_5y^2 \]
 \[y = b_0 + \cdots + b_3x^2 + b_4xy + b_5y^2 \]

Conformal transformation

- preservation of angles (shape)
- translation
- rotation
- scaling

Affine transformation

- preservation of parallels
- translation
- rotation
- scaling

Bi-linear transformation

- no preservation of parallels
- translation
- rotation
- scaling
2nd order transformation

- no preservation of parallels
- straight lines become curved
- translation
- rotation
- scaling

Resampling

- Resampling is required because pixels of a transformed or georeferenced image and a raster database do not coincide

Interpolation methods

- Nearest Neighbor
- Bi-linear Interpolation
- Cubic Convolution

Geocoding

- Geocoding involves transforming image coordinates (local) to map projected coordinates (real world).
Polynomial Geometric Model

- **Polynomial**
 - sensor independent
 - statistical principles
 - corrects image locally
 - no information on imaging geometry needed

Sensor Geometric Model

- **Sensor Model**
 - sensor specific
 - analytical reconstruction of image formation using orbit and sensor parameters
 - corrects image globally
 - small No. of GCP’s to improve parameters
 - DEM

Comparison – Geometric Models

- **Polynomial**
 - flat terrain
 - lower accuracy
 - many GCP’s
 - computationally less intensive
 - applicable to any type of sensor data

- **Sensor**
 - any type of terrain
 - high accuracy
 - few GCP’s
 - computationally intensive
 - specific model needed for each sensor data

Combining radar and optical data – Example Brooks Range
Terrain correction and ortho-rectification

That is what you have

Landsat ETM-7
ERS-1

Reference DEM

- shaded relief of the reference DEM
- average height used for geocoding
- used for terrain correction

Terrain correction

Geocoded image
Terrain corrected image

IHS transformation without TC

- Areas with correct reference height line up
- Areas with significant height differences show large offsets
IHS transformation with TC

- Things line up!
- Areas where mountains tops created severe layover can be corrected but not fully recovered

Bottom line

- need to terrain correct radar imagery in order to properly combine them with optical images
 - for moderately steep to steep terrain
 - on a case by case basis for low slopes