Deriving Wind Speed from Synthetic Aperture Radar Images

Jeremy Nicoll
Alaska Satellite Facility
– Engineering Center
Outline

- Bragg scattering
- CMOD algorithms
- Scatterometers
- SAR data
- Applications
 - Hurricanes
 - Gap flow
 - Barrier jets
 - Vortex shedding
 - Internal waves
- Data quality issues
Bragg scattering

- Resonant phenomena when distance between flat surfaces in the direction of view is \(\frac{1}{2} \) the instrument wavelength.
- Assumed the dominant mechanism in radar backscatter over water.

http://earth.esa.int/applications/data_util/SARDOCS/spaceborne/Radar_Courses/Radar_Course_II/bragg_scattering.htm
CMOD algorithms

• All models Radar Cross Section as functions of at least these three:
 – Wind speed (v)
 – Wind direction with respect to sensor (ϕ)
 – Incidence angle (θ)

• Version # (CMOD1-5) refers to different ways of estimating B values

• CMOD5 uses 28 parameters nested in B values.

• Parameterized empirically

\[\sigma_0^m(v, \phi, \theta) = B_0(v, \theta)(1 + B_1(v, \theta) \cos(\phi) + B_2(v, \theta) \cos(2\phi))^{0.625} \]
Using CMOD

• Invert to yield wind speed by knowing
 – NRCS
 – direction
 – incidence angle

• Necessary to know these parameters (duh!)
 – Not actually easy to know all these well enough.

• For SAR
 – Conversion from VV to HH for RADARSAT-1
 – Band conversion necessary if different from C-band
CMOD5 model at constant wind speed (20 m/s)
CMOD5 model at constant incidence angle (30 degrees)
Scatterometers

- Measure the surface cross section at a number of aspect angles and polarizations.
- Spatial resolutions of only 25–50 km
 - applicable more to the open ocean than to coastal areas.
- Complementary to SAR data.
- SeaWinds (on QuikSCAT)
 - uses a rotating dish antenna with two spot beams
 - sweep in a circular pattern.
 - Radiates in a continuous, 1,800-kilometer-wide band
 - ~ 400,000 measurements, 90% of Earth's surface in one day.

Image courtesy of MERS: http://www.mers.byu.edu/images/Seawinds/seawinds_hires.gif
SAR data

- Resolution 10-100m (native)
- Smaller incidence angle range
- Single azimuth angle
- Radar cross section must be calibrated

- Need wind direction as input
 - Linear features in SAR image (wind rows)
 - Usually successful, but not always
 - From modeling
 - NOGAPS (1° X 1° grid)
 - Uses Scatterometer data in model!
 - Low resolution
 - Time / space mismatch
 - Some other / blended methods
SAR \rightarrow wind speed
Applications

- Where greater precision is needed
- Along coastlines
- Rapidly changing wind speed or direction
- To observe structure of phenomena
Hurricanes, polar lows
Gap flow
Barrier jets
Vortex shedding
Internal waves
Storm fronts
R155312309P40002 with Wind Direction = 135 deg

Lee shadowing

ASF Technical Seminar Series, 10/18/2006
Data quality issues

Beam seams

PRF Ambiguity
Data quality issues

Noise floor

Ice masking
DQ Issues: Wind direction estimates
DQ: model mismatch
DQ: SAR processing errors
Wind speed data flow

• Latencies
 – Downlink & SAR Processing
 • <2 hours
 – Wind speed processing
 • <15 minutes
 – ftp to lower 48
 • 15-30 minutes
 – Waiting latencies
 • ~ 1 hour
Data archives

- Near-real time at ASF (wind.asf.alaska.edu)
 - Since Fall 2005

- Main archive at JHU-APL
 (http://fermi.jhuapl.edu/sar/stormwatch/index.html)
 - Since December 1997
Up and coming

- Google Earth!
- Ice overlays.
- L-band modifications to CMOD algorithm
The END!