ATM 621

Course: ATM621, Introduction to Computational Meteorology

Class hours: 3:30pm to 5:30pm, Wednesdays; 009 ARSC computer lab

Instructors: Carmen N. Moelders (aka Nicole Mölders), Richard L. Collins, G. Javier Fochesatto, Xiangdong Zhang, ARSC consultant

Contact info: for office hours and location, email addresses and telephone numbers see web pages of the respective instructors

Syllabus URL: http://www.gi.alaska.edu/~molders/syllabus_com.html

Goal: Students completing this course should have an increased understanding and ability to complement their critical thinking with computational tools in addressing research problems in meteorology

Student Learning Outcomes:

- Learn to discuss science in an effective manner using computer skills
- Develop skills to read codes critically
- Improve the quality of your presentations
- Know how to write computer codes

Course Description: This course will provide students with a basic knowledge on how to apply software related to atmospheric sciences problems. This includes knowledge of the vi editor, ARSC supercomputer system, UNIX, shell scripts (ARSC consultant), program logic (algorithm development), FORTRAN90 and NCL (Instructor: Mölders), MatLab (Instructor: Fochesatto), ferret (Instructor: Zhang), and IDL (Instructor: Collins). The students will learn how to run given software products on UNIX and other platforms and the basic skills for modifying these programs for their purposes.

Suggested readings/textbooks:

The individual instructors will give a short evaluation of relevant books/manuals/webpages at the beginning of their lecture. You do not need to buy any of the books. You should also read other printed material as assigned.

Other course resources: We will provide additional material in class as we think is necessary. We expect you to read assigned material and do additional reading as required to solve the assigned homework problems or deepen your understanding. It is your responsibility to apply for an ARSC account in time so that you can do the homework assignment.

Course objective: At the end of the semester, you should be able to read, modify and write programs and be able to program typical tasks in of computational meteorology, solve fundamental meteorological problems on a computer, and visualize data and results graphically. Fundamental goals are that you develop skills to process and handle data, combine data from different sources and of different format, and visualize them and that you learn higher order thinking. This includes application of learned material to totally different problems or combining learned material together to solve a problem. You should be able to handle the computational part of future homework problems (as given in modern textbooks) after the course.

Attendance: You should attend class regularly and use the reference manuals and a book of your choice related to this class. Class attendance and submission of the homework assignments are required and will be a part of your grade. Unexcused absences lead to deduction of the attendance points. Excused absences are approved in advance or absences due to a documented emergency. Such documentation must be made immediately upon the student's return to class. Please understand that this is a college course - you are expected to be on time for class and have all the required material unpacked.

Homework: Each student will do two homework assignments covering two of the programming languages. Which programming languages the homework assignments will cover will be decided upon by the instructors in collaboration with the student and their
advisor. This procedure is to avoid that you spend too much time on a language that for your research is never used and to ensure to spend the time efficiently on those parts of the class that are of most relevance for you.

Submission deadline for homework assignments is the Monday after Thanksgiving at noon. You will have to submit the source codes as well as the related plots/data as assigned by the respective instructor. Each instructor will let you know whether they prefer hardcopies and/or email submission. It is your responsibility to keep track of the way of submission required. The contributions should be thorough and complete, reflecting the thought that you have put into your tasks. The faculty who assigned the homework will grade the homework for completeness, correctness, understanding, and the way of presentation. Your final grade will be the sum of the grades that you get from all instructors regarding class attendance and on the two grades from the homework assignments. Your grade is based to 90% on your homework assignment and 10% on attendance and class participation.

The homework assignments will ask for applying the material learned in class to a typical meteorological problem. They serve as a preparation for your future education and research towards your thesis at UAF and your professional life. All core classes rely on that you know how to solve and visualize meteorological problems using a computer.

No late homework will be accepted (except in excused absences). Homework should be submitted in readable style. "Readable style" means typed, double-spaced, using at least a 12-point font, one-inch margins, and in hard copy format. It is simply too tricky to edit and make comments in single-spaced type. If you have not met these stipulations, we will return it to you not graded. Late homework will not be accepted via e-mail or fax unless you make prior arrangements with the respective instructor.

It is the student's responsibility to prepare homework on time. We strongly suggest that you plan and schedule your work. We recommend having backup systems in place so you can have all work completed on schedule. Getting work done on time is a key to early success in your business or scientific career. A major complaint of employers is that faculty do not instill a sense of responsibility in students.

It is part of your homework - even when not said explicitly - to read parts of books on the subject of the class, the readings and the notes provided. This means that at the beginning of the class we may ask questions and you can offer to answer them, but we also reserve the right to randomly ask students who do not volunteer. The answers are also part of your homework grade.

In-class presentations: It is the student's responsibility to be aware of and to be prepared for each assigned reading task when it is due. Give the person who is speaking your undivided attention. It is not only common courtesy, but whispering or talking can distract, annoy, and even intimidate students around you as well as the instructors. Essentially, you should treat classmates as you would like, and expect, to be treated yourself.
Examinations: There will be no final examination.

Additional policies:

1. No weapons allowed in class.

2. Due dates are firm, with the exceptions mentioned above as well as documented emergencies.

3. If you have a disability and require any auxiliary aids, services or accommodations under the Americans with Disabilities Act, please contact Nicole Mölders during the first week of the semester so that the instructors are able to define specific accommodation needs and have enough time for any necessary preparation. If you have any kind of a physical or learning disability, you must tell us about it. All disabilities are documented by UAF's Center for Health & Counseling and instructors receive a formal letter requesting that accommodations are made for any student with disabilities.

4. Any student who is an UAF sponsored athletic or who has other personal or situational difficulty that might affect class performance is invited to contact us in the first week of the semester (or as soon as such matters emerge) so that ways of accommodating the difficulty may be anticipated.

5. Phones must be switched off in class.

6. Instructors are not required to answer emails between Friday 1530 and Monday 1000, i.e. they answer within 24h to emails only on Tuesday to Friday. When they are on travel, they are not required to answer to emails, as they cannot guarantee email access.

All students in the class were informed about the policies at the beginning of the class and in the syllabus, and it would be unfair to everyone else to give one person an exception.

Other important information: It is essential that you (1) keep up with the assigned readings, (2) budget your time wisely to complete all of your assignments, and (3) seek clarification on any material, which you do not understand, during office or class hours. If we are not covering subjects adequately, or the in-class exercises are confusing or difficult, or if you do not understand the questions in your homework assignments, please let the respective instructor know. We want you to understand the material.

Grading Policy: This course is success-oriented. Our aim is for all students to meet their individual learning and grade goals. Of course, this does not mean that you can avoid
working hard. Instead, it means that (1) all students who do well in class and homework assignments will be rewarded accordingly and (2) the grade distribution will not be adjusted to make sure it fits a bell-shaped curve. We expect that (1) you aim to give your personal best in the course, and (2) use in-class exercises, homework, and examinations as an opportunity to demonstrate your understanding of the material. To obtain an "A" grade you will need to produce work that far exceeds our normal expectations. Our normal expectations are regularly attending the classes, hard work evidence of time spent with the material and an ability to demonstrate understanding of all concepts.

Grading for ATM621 will follow the UAF guidelines included in the following table:

<table>
<thead>
<tr>
<th>GRADE</th>
<th>UAF GUIDELINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>An honor grade indicates originality and independent work, a thorough mastery of the subject, and the satisfactory completion of more work than is regularly required.</td>
</tr>
<tr>
<td>B</td>
<td>Indicates outstanding ability above the average level of performance.</td>
</tr>
<tr>
<td>C</td>
<td>Indicates a satisfactory or average level of performance.</td>
</tr>
<tr>
<td>D</td>
<td>The lowest passing grade indicates work of below average quality and performance.</td>
</tr>
<tr>
<td>F</td>
<td>Indicates failure to meet lowest standards.</td>
</tr>
</tbody>
</table>

The grade given by each instructor will be 10% attendance, and the two grades on the homework are averaged and make up 90% of the final grade. Each instructor will provide you one grade with respect to your attendance/class participation. The two instructors in who taught the subjects your homework assignment falls in, will grade your homework assignment. The final grade is the average of the attendance/participation grades weighted by 0.1 and the sum of the homework assignment grades each weighted by 0.45. Note that UAF permits us to give plus and minus grades. We will do that if your performance falls between the above grades. A plus is given when performance is closer to the lower grade, a minus if it is closer to the better grade. To get a "C" grade, 50% of the points in each category have to be earned. This means, for instance, that you must pass the homework assignments with at least 50% of the points and attend at least 50% of the classes. The grade distribution for attendance and homework assignments is as follows:

The grade distribution is as follows: A percentage of 90% or better will guarantee the student an A grade; a percentage of 70% or better will guarantee the student a B grade; a percentage of 50% or better will guarantee the student a C grade; a percentage of 30% will guarantee the student a D grade; any percentage less than 30% will lead to an F grade. Grades of "incomplete" will be given only in cases where an extraordinary, exceptional reason, submitted in writing by the student and judged valid by me. See UAF policies for details. Note that +/- are possible on the final grade with the following UAF rules A 4.0, A- 3.7, B+ 3.3, B 3.0, B- 2.7, C+ 2.3, C 2.0, C- 1.7, D+ 1.3, D 1.0, D- 0.7,
and F 0.0, respectively. Thus, 85-89% is A-, 77-84% is B+, 70-76% is B, 64-69% is B-, 57-63% is C+, 50-56% is C, 44-49% is C-, 40-43% is D+, 35-39% is D, 30-42% is D-.

Learning is an interactive process and each class is individual. Although we have put a lot of thought into the sequence of topics, this schedule is tentative by purpose and subject to change as necessary due to availability of support materials, adaptation to specific needs of the class, etc. The schedule for this class will remain an on-going construction in light of what is accomplished in each class meeting. Since this course will be attended by students with different levels and/or background, it will be unavoidable to insert additional subjects or to explain subjects in more detail. Departures from the schedule, such as additional readings, assignments, deadline changes, and activities, may be announced in class. These changes will take priority over the printed schedule. It is your responsibility to be in class and to keep up-to-date on whatever changes we make, or the class negotiates.

Tentative Fall 2012 Schedule:

Sept 5: Reading and discussion of class syllabus; discussion of plagiarism; getting access to the supercomputer (instructor: Mölders with help of ARSC consultant)
Sept 12: Introduction to UNIX, shell scripts, vi editor, supercomputer (ARSC consultant)
Sept 19: Basics of program logic and FORTRAN90/95 (instructor: Mölders)
Sept 26: Basics of ferret (instructor: Zhang)
Oct 3: Basics of MatLab (instructor: Fochesatto)
Oct 10: Basics of NCL (instructor: Mölders)
Oct 16: Basics of IDL (instructor: Collins)
TBA: 1h meeting with the instructors that taught the language of your homework assignments (=2h total)
Monday after Thanksgiving at 1200: Submission of homework assignments to the respective instructors.

Hint: Plan your time wisely. Start working on your homework assignments as soon as you get them and not the day before they are due.