Research Group

Micrometeorology | Atmospheric Boundary Layer | Tropospheric Remote Sensing

 

Dr. G. Javier Fochesatto

Associate Professor of Atmospheric Sciences

Geophysical Institute & College of Natural Science and Mathematics.

2156 Koyukuk Drive. P.O. Box 757320. Fairbanks, Alaska 99775-732- USA

 

Office Room 317 Akasofu Building. West Ridge UAF Campus

Phone: (907) 474-7602
Fax: (907) 474-5882

Email: gjfochesatto@alaska.edu

Skype ID: foch123

Office Hours: Open-door policy. Students are welcome to stop by anytime accepting the risk that I might be busy. Contact me to make an appointment to secure a specific time.



 

Research Areas of Interest

Turbulence in Complex Canopies

Environmental Fluid Mechanics

Micrometeorology: surface-atmosphere interaction, turbulent fluxes of heat, momentum and carbon

Atmospheric Boundary Layer meteorology, dynamic, turbulence and composition.

Applications to surface fluxes in Hydrology, Agricultural Systems, Arctic Tundra and Boreal Forest

Opto-Mechanics and Optoelectronics

Laser Spectroscopy/Lidar Remote Sensing

Laser and Microwave Scintillometry

Raman Spectroscopy for Atmospheric Composition

Earth System Models and Environmental Remote Sensing

 

Education

2000 PhD Physics

Laboratoire de Météorologie Dynamique du CNRS, Department of Mechanics, Ecole Polytechnique.

Université Pierre et Marie Curie, Paris VI (Sorbonne Universités) Paris, France.

 

1991 Electronic Engineer

Universidad Tecnológica Nacional. Buenos Aires, Argentina.

Specialization in Lasers, Optoelectronics and Control Theory.

 

Courses

ATM-673 Micrometeorology

ATM-697 Physics of the Atmospheric Boundary Layer

ATM-497/615 Cloud Physics

ME-450 Theory of Flight (Department of Mechanical Engineering, Aerospace Minor College of Engineering and Mines)

EE-471 Fundamentals of Automatic Controls (Department of Electrical Engineering, College of Engineering and Mines)

 

Awards

Teaching Award Department of Atmospheric Sciences (May 2018)

Editor's Award American Meteorological Society (January 2018, Austin Texas)

With AMS' President Roger Wakimoto during the AMS Awards Ceremony

(Austin, TX Jan., 2018)

 

 

Outreach

Atmospheric Sciences K-12 Outreach during the College of Natural Science and Mathematics Science Potpourri - April 2018

With Atmospheric Sciences Graduate Students performing live experiments Boundary-Layer in a Jar and Kelvin Helmholtz waves.

Photo by J-R Ancheta, UAF

Snapshot from video taken by Moeka Ono (Student from Hokkaido University)

 

Research Group

Douglas Keller (BS+MS)

Mechanical Engineering

Developping new methodologies for atmospheric boundary-layer detection by means of Lidar and radiosondes

Funded by Alaska Space Grant Fellowship

Fochesatto G. J., O. Galvez, P. Ristori, D. Keller and E. L. Fochesatto. Lidar to Determine the Fractions of Ice, Liquid and Water Vapor in Polar Tropospheric Cloud.

Accepted for publication in the peer reviewed proceedings of the 28th International Laser Radar Conference, Bucharest, Romania. 25-30 June 2017.

 

Liam Cassell (BS)

Electrical Engineering

Developping a robotic arm for non-destructive LAI determination

Funded by URSA, UAF (2018).

 

Derek P. Starkenburg (Ph.D Atmospheric Sciences, 2015)

Research: Turbulent fluxes in complex canopies heterogeneous surfaces: canopy and sub-canopy flow coupling, spatial variation of fluxes and large scale aggregation of fluxes.

Example Publications:

Starkenburg, D., S. Metzger, G. Fochesatto, J. Alfieri, R. Gens, A. Prakash, and J. Cristóbal, 2016.

Assessment of Despiking Methods for Turbulence Data in Micrometeorology.

J. Atmos. Oceanic Technol., 33, 2001–2013,  doi: 10.1175/JTECH-D-15-0154.1. 

 

Starkenburg D. P., Fochesatto G. J., Cristóbal J., Prakash A., Gens R., Alfieri J.G., Nagano H., Harazono Y., Iwata H. and Kane D.L. 2015.

Temperature regimes and turbulent heat fluxes across a heterogeneous canopy in an Alaskan boreal forest.

J. Geophys. Res. Atmos., 120: 1348–1360. doi: 10.1002/2014JD022338

 

Starkenburg, D., G. J. Fochesatto, A. Prakash, J. Cristóbal, R. Gens, and D. L. Kane. 2013.

The role of coherent flow structures in the sensible heat fluxes of an Alaskan boreal forest.

J. Geophys. Res. Atmos., 118, 8140–8155, doi:10.1002/jgrd.50625.

 

Watcharee Ruairuen (Ph.D Natural Resources and Sustainability, 2015)
Research:
Evapotranspiration cycles in Agroecosystems in Northern latitudes, micrometeorological and hydrological techniques for irrigation and agroecosystems sustainable management of water.

Example Publications:

Ruairuen W., G. J. Fochesatto, E. B. Sparrow, W. Schnable, M. Zhang and Y. Kim. 2015.

“Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role”.

Plos One DOI:10.1371/journal.pone.0137209. 30 pages.

 

Ruairuen W., G. J. Fochesatto, M. Bitelli, E. B. Sparrow, M. Zhang and W. Schnable (In review).

Book: Evapotranspiration, InTech Open Source (2017).

Chapter: Evapotranspiration in Northern Agroecosystems: Numerical Simulation and Experimental Comparison.

 

Matthew A. Gruber (MS Atmospheric Sciences, 2013)

Research: Large Scale Area-Average turbulent fluxes retrievals by Scintillometry Theory and Applications.

Example Publications:

Gruber, M. A., G.J. Fochesatto, O.K. Hartogensis, and M. Lysy. 2014.

Functional derivatives applied to error propagation of uncertainties in topography to large-aperture scintillometer-derived heat fluxes.

Atmos. Meas. Tech., 7, 2361-2371, doi:10.5194/amt-7-2361-2014, 2014.

 

Gruber M. A, G. J. Fochesatto and O. Hartogensis. 2014.

Sensitivity of Displaced-Beam Scintillometer Measurements of Area-Average Heat Fluxes to Uncertainties in Topographic Heights.

arXiv Atmospheric and Oceanic Physics, 1405.2309.

 

Gruber M. A, G. J. Fochesatto and O. Hartogensis. 2014.

Sensitivity of Large-Aperture Scintillometer Measurements of Area-Average Heat Fluxes to Uncertainties in Topographic Heights over Variable Terrain”.

Atmos. Meas. Tech. Discuss., 7, 33-68, 2014.

 

Gruber M. A, G. J. Fochesatto and O. Hartogensis. 2014.

Sensitivity of Displaced-Beam Scintillometer Measurements of Area-Average Heat Fluxes to Uncertainties in Topographic Heights.

arXiv, Atmospheric and Oceanic Physics, 1405.2309.

 

Gruber M. A. and G. J. Fochesatto. 2013.

A New Sensitivity Analysis and Solution Method for Scintillometer Measurements of Area-Average Turbulent Fluxes.

Boundary-Layer Meteorology, 149:65–83 DOI 10.1007/s10546-013-9835-9

 

Gruber, M. A., Fochesatto, G. J., Hartogensis, O. K., and Lysy, M. 2013.

Functional derivatives applied to error propagation of uncertainties in topography to large-aperture scintillometer-derived heat fluxes”.

arXiv Atmospheric and Oceanic Physics, 1309.4735. Published final version in Atmospheric Measurements Techniques.

 

Gruber M. A. and G. J. Fochesatto. 2013.

A New Sensitivity Analysis and Solution Method for Scintillometer Measurements of Area-Averaged Turbulent Fluxes.

arXiv Atmospheric and Oceanic Physics, 1309.1902. Published final version in Boundary-Layer Meteorology.

 

John A. Mayfield (MS Atmospheric Sciences, 2011)

Research: Micrometeorological influences of small scale flows in the winter atmospheric boundary layer of Interior of Alaska.

Example Publications: 

Mayfield J. A. and G. J. Fochesatto. 2013.

The Layered Structure of the winter Atmospheric Boundary Layer in the Interior of Alaska.

J. Appl. Met. and Climatol., 52, 953-973.

 

Fochesatto G. J., J. A. Mayfield, M. A. Gruber, D. Starkenburg and J. Conner. 2013.

Occurrence of Shallow Cold Flows in the Winter Atmospheric Boundary Layer of Interior of Alaska.

Meteorol. Atmos. Phys. DOI 10.1007/s00703-013-0274-4.

 

The University of Alaska is an AA/EO employer and educational institution and prohibits illegal discrimination against any individual: www.alaska.edu/nondiscrimination.