Dissolution and precipitation during flow in porous media

Gry Andrup-Henriksen
Fall 2006
Outline

• Introduction

• Theoretical study + simulation:
 • Equations at and above the Darcy scale → smoothly varying porosity and permeability (Aharonov et al., 1997a)
 • Microscopic simulation of dissolution:
 • Lattice-Boltzmann technique (Szymczak et al., 2004)
 • Mantle
Introduction

• Fluid flow coupled with chemical reactions ⇒ long range interactions, disequilibrium and change in solid geometry

• Influence flow patterns and chemistry within the mantle

• Diffusive porous flow unstable along adiabatic PT gradient ⇒ formation of channels

• Formation of dikes

• Dissolution channels observed as dunes (cm – 100m scale)

• Dunites are formed by constant replacement of peridotite as a result of dissolution of pyroxene + crystallization of olivine in a liquid migration by porous flow through mantle

(Kelemen et al., 1995)
Theoretical study

Based on:

• Conservation of mass
• Darcy’s law

Assumptions:

• Single component system
• Densities \Box_s, \Box_f constant
• Linear gradient of solubility
• Dispersion/diffusion coefficient equal in all directions
Constant boundary pressure force \(\Rightarrow \) the flux \(Q \) freely adjust to changing \(k \)

\[
\phi = \frac{\phi_i}{1 + B \phi_i^{n-1} (n-1)t}^{n-1}
\]

\[
B = \frac{\rho_f}{\rho_s}
\]

\[
\phi_i = \phi(t = 0)
\]

- : Dissolution

+ : Precipitation

\(\rightarrow \) Rate of change of porosity changes with time

\(\rightarrow \) Dissolution: Unstable increase in \(\phi \) with \(t \)

\(\rightarrow \) Precipitation: \(\frac{\partial \phi}{\partial t} \rightarrow 0 \) as \(t \rightarrow \infty \)
Constant flux boundary condition

\[\phi = \phi_i \pm BQt \]

+ : Dissolution
- : Precipitation

→ Rate of change of \(\mathbf{x} \) constant when \(Q \) constant

→ Dissolution: No unstable growth of \(\mathbf{x} \), since \(Q \) is constant even though the free space increase

→ Precipitation: Reduces \(\mathbf{x} \) faster

Since \(k \) changes, but \(Q \) constant → pressure must adjust with \(z \):

\[p_e(l, t) \approx l \left(\left[\frac{\phi_i}{\phi_i \pm BQt} \right]^n - 1 \right) \]

From Darcy’s law
Depth \(z=1-l \)

→ Dissolution: \(p_e(z) \downarrow \) since the same \(Q \) occupies an increasing void space

→ Precipitation: \(p_e \uparrow \) (since \(k \Downarrow 0 \rightarrow p > p_c \Rightarrow \) hydraulic fracturing)
Controlling parameters

Damköhler number:

\[Da = \frac{L}{L_{eq}} \]

Ration between the size of the system \(L \) and the chemical equilibrium length \(L_{eq} \):

Peclet number:

\[Pe = \frac{\omega_0 L}{D} \]

\(\omega_0 \): characteristic fluid velocity

\(D \): diffusion/dispersion coefficient

Ratio between rate of transport by combined diffusion and dispersion to rate of transport by advection.
Statistical properties and morphology due to flow and reaction as a function of time

Autocorrelation function $C(r)$:

Correlation between scalar property Φ at position r' and $r'+r$:

$$C(r) = \frac{1}{V} \int_V \Phi(r'+r)\Phi(r')dr'$$

$C(r) \uparrow$: High porosity regions preferentially found up or downstream to other high porosity regions $\rightarrow C(r)$ measure of channeling

$C(r) \downarrow$: Destruction of correlated paths

Evolution of histograms of flux and porosity:

Width \rightarrow Variability
Temporal evolution of the permeability

Dissolution:
- Unstable growth
- High $Da \Rightarrow$ more rapid growth

Precipitation:
- Independent of Da

$Da=100$
$Da=10$

Linear prediction
3D isosurface of Q for dissolution

- Elongated permeability structures parallel to flow direction

- $k_0 > \langle k_0 \rangle \Rightarrow$ flux \uparrow
 \Rightarrow dissolution \uparrow
 \Rightarrow positive feedback
Most precipitation occurs close to entrance to preferred paths for flow:

⇒ entrance clog up
⇒ flow diverted to other paths
⇒ diffuse and uniform flow
⇒ narrowing flux and porosity histogram
Histograms of flux and porosity

- Initial random configuration for dissolution
 - Dissolution
 - Precipitation
 Initial= 12/25

- Dissolution: Variability in Q ↑
- Precipitation: smoothing effect

- Change in variability in θ smaller, but same characteristics as for Q
Histogram of correlation function of porosity

- Initial random configuration for dissolution
 - Initial random configuration for dissolution
 - Precipitation

- Dissolution: $C(r) \parallel$ to flow direction \ast, consistent with elongated channel formation

- Precipitation: $C(r) \parallel$ to flow direction \ast, overlapping the random initial correlations
Porosity correlation function along flow direction at a given lag of 1/6 for dissolution

- $Da=100 \Rightarrow$ unstable growth of C
- $Da \downarrow \Rightarrow$ channels growth ★
- $Da=5; Pe=200: C \uparrow$, but not unstable growth
 - $Pe=10$: No increase \rightarrow uniform
Porosity correlation function along flow direction at a given lag of 1/6 for precipitation

- ~ independent on Da and Pe
- Precipitation \uparrow
 \Rightarrow flow diverted
 \Rightarrow low k regions form adjacent to high k regions
 \Rightarrow negative change in C

![Graph](image-url)

$C(lag=1/6)$

time (in nondimensional units)

Legend:
- $Da=10, Pe=200$
- $Da=100, Pe=200$
- $Da=100, Pe=10$
- $Da=10, Pe=10$
Porosity profile over transition zone

\[\bar{\chi} \] average over \(x \) and \(y \)

\(t = 0.5 \)

- Difference between dissolving and precipitation regions \(\uparrow \) with time
Excess pressure profile for transition zone

\[t=0.5 \]

- Overpressure ↑ close to transition
- Difference between dissolving and precipitation regions ↑ with time
Dissolution

- Elongated channels in flow direction
- Depends strongly on Da and Pe
- Channels form for $Da \gg 1$
- Channel growth \star for $Da \star$
- Unstable growth of permeability
- Minor increase in correlation perpendicular to flow
 \Rightarrow matrix anisotropic
- $Pe \downarrow \Rightarrow$ width of channels \uparrow, spacing between channels \uparrow, channel growth rate \downarrow
Precipitation

- Permeability ↓ with time
- Rate of decrease ↓ with time
- Increasing uniform flow with time
- No significant difference for different Da and Pe
Transition zone

• Monotonically increasing overpressure

• Permeability ↓ in precipitation region ⇒ overpressure ↑

• Overpressure ↑ until > strength of porous matrix → fractures

System

• Da and Pe are the controlling parameters in a coupled flow and reaction system

• Da and Pe depend on system size

• The evolution of the system is highly dependent on boundary conditions (constant flux/pressure)
Limitations and improvements

• Dissolution and precipitation differ only by sign and are reversible in the model.

• Only looked at single mineral component and fluid component.

• Need a better description of porosity-permeability relation and microscopic distribution of precipitation.

• Need to consider compaction of solid phase.
Microscopic numerical simulation of dissolution
(Szymczak et al., 2004)

• Stokes flow
• Lattice-Boltzmann with continuous bounce back at solid-fluid boundaries
• Transport of dissolved species in pore spaces is modeled by an innovative random walk algorithm that incorporates chemical reactions at pore surface
Results for $Da=0.1$ $Pe=10$
Mantle
(Aharonov et al., 1995 + Kelemen et al., 1995)

• Potentially existing channeling instability in Earth’s upper mantle:
 Melt ↑
 ⇒ decompression
 ⇒ dissolution ↑
 ⇒ perturbation in porosity
 ⇒ flow ↑
 ⇒ dissolution ↑
 ⇒ porosity ↑
 \[\text{Positive feedback} \]

• Development of low porosity cap overlying high porosity conduits
 ⇒ hydrostatic overpressure ↑
 ⇒ fracture and magma transport to surface in dikes
References

• Kelemen, P., J. Whitehead, E. Aharonov, and K. Jordahl, 1995, Experiments on flow focusing in soluble porous media with applications to melt extraction from the mantle, J. Geophys. Res., 100, 475–496

Micro-scale
(*Aharonov et al.*, 1997b)

Fractal porosity χ_f: associated with pits and protruding features
Euclidean porosity χ_e: “Inflate balloon”

\[\chi = \chi_f + \chi_e \]

- Diagenesis $\Rightarrow \frac{\phi_f}{\phi} \uparrow$
- Dimension \uparrow with amount of diagenetic alteration
Fractal dimension as a function of ratio of probability of dissolution over precipitation

- p_-/p_+ $\uparrow \Rightarrow$ fractal dimension \uparrow
- $p_-/p_+ \rightarrow 1$: loose in fractal behavior
- $p_-/p_+ \uparrow \Rightarrow$ rate of reaction limited growth \downarrow

p_-: Probability of particle dissolution
p_+: Probability of particle precipitation
Channel length – cm scale

Kelemen et al., 1995

- Inlet tube with dozens of small holes to diffuse flow
- Closed water reservoir
- Water reservoir, open at top
- Variable height outlet tube
- Mixture of salt & glass balls
- Foam
- Plexiglass with more than 50 small outlet holes

1200 s

1500 s

Laboratory experiments growth rate data:

- Channel length, L (cm)
- Time, t (sec)
- L = 4.60 e^{-0.0020t}
- R = .98
- L = 1.67 e^{-0.0019t}
- R = .99

Numerical experiments growth rate data:

- Channel length, L
- Time, t
- L = 1.14 e^{0.011t}
- R = .99
- L = 1.30 e^{0.007t}
- R = .97
Assumptions

- Single soluble component \((c_i^s=1)\) ⇒ Fluid phase:
 - Carrier fluid \((1-c_i)\) (no solid phase)
 - Dissolved component \((c_i)\)

- Densities \(\rho_s, \rho_f\) constant

- Dispersion/diffusion coefficient \(D\) equal in all directions

- Specific surface area \(A\) constant

- Linear gradient of solubility
Flow through porous media

\[\phi \nabla = -\frac{k}{\mu} \nabla p \]

Darcy’s law

\[\nabla p = \nabla p_e + (\rho_s - \rho_f)g \]

\[k(\phi) = \frac{d^2 \phi^n}{b} \]

\(k \): Permeability
\(\mu \): Viscosity
\(d \): Typical grain size
\(n \): usually > 2
\(b \): constant

\(\phi \) << 1
\(\rho_s, \rho_f \) constant
Conservation of mass
Single soluble component system

\[
\frac{\partial \phi}{\partial t} = - \frac{\Gamma}{\rho_s}
\]

\[
\frac{\partial \phi}{\partial t} + \bar{\nabla} \cdot (\bar{v} \phi) = - \frac{\Gamma}{\rho_f}
\]

\[
\phi \frac{\partial c}{\partial t} + \phi \bar{v} \cdot \bar{\nabla} c = D \bar{\nabla} \cdot (\phi \bar{\nabla} c) - (1 - c) \frac{\Gamma}{\rho_f}
\]

\[
\Gamma = RA(c - c_{eq}) \quad \text{(Mass transfer term)}
\]

R: reaction rate constant of soluble component

A(x,t): Specific surface area (fct. of \(x\), distribution of minerals at the pore-grain interface, whether \(m\) is dissolving or depositing)

c_{eq}: Equilibrium concentration
Nondimensionalization

\(\phi_0 \): Characteristic porosity
\(k_0 \): Characteristic permability
\(\phi_0 \): Fluid z-velocity
\(L \): Characteristic length scale
\(c_0 \): Characteristic concentration
 (max equilibrium concentration)

Nondimensional variables ‘:

\[
\begin{align*}
L' &= \frac{d^2 \phi_0^n}{b} \\
\omega_0 &= \frac{k_0 \Delta \rho g}{\phi_0 \mu} \\
\bar{x} &= Lx' \\
\phi &= \phi_0 \phi' \\
p &= \Delta \rho g Lp' \\
v &= \omega_0 v' \\
t &= \frac{L}{\omega_0 c_0} \\
c &= c_0 c' \\
c_{eq} &= c_0 c_{eq}' (\bar{x}, t)
\end{align*}
\]
Basic set of equations

\[\frac{\partial \phi'}{\partial t'} = -\frac{\rho_f}{\rho_s} \Gamma' \]

Temporal evolution of porosity due to reaction

\[\nabla \cdot (k' \nabla p') = c_0 \frac{\rho_s - \rho_f}{\rho_s} \Gamma' \]

Poisson equation for pressure → total fluid conservation
Assuming constant \(k \) and \(c_0 \ll 1 \) ⇒ constant pressure gradient

\[c_0 \phi' \frac{\partial c'}{dt} - k' \nabla p' \cdot \nabla c' = \frac{1}{Pe} \nabla \cdot (\phi' \nabla c') - (1 - c_0 c') \Gamma' \]

Change in mineral concentration due to reaction, diffusion and advection

\[\Gamma' = Da(c' - c'_{eq}(x, t)) \]

Mass transfer rate

\[k' = \phi'^n \]
Numerical experiment using modified relaxation Boltzmann Method
(Kelemen et al., 1995)

Saturation concentration of soluble material in fluid:
Top: 0
Bottom: 0.05

Initial undersaturated fluid
No solubility gradient

\[
\frac{dp}{dz} = \text{const}
\]
High porosity channels ⇒
Solid-liquid surface area ↓
and $L_{eq} \uparrow$

$\bullet_0(z) \Rightarrow L_{eq} \uparrow$

Grain boundary scale \propto

Larger \propto_0
and $\bullet_0 \rightarrow$
larger \bullet ?

(Aharonov et al., 1995)
Conservation of mass
Multi component system

Total mass:
\[
\frac{\partial \rho_s (1 - \phi)}{\partial t} = \sum_i \Gamma_i
\]
\[
\frac{\partial \rho_f \phi}{\partial t} + \nabla \cdot (\rho_f \nabla \phi) = -\sum_i \Gamma_i
\]

Each mineral component:
\[
\frac{\partial \rho_s (1 - \phi) c_i^s}{\partial t} = \nabla \cdot [D_i^s \rho_s (1 - \phi) \nabla c_i^s] - \Gamma_i
\]
\[
\frac{\partial \rho_f \phi c_i}{\partial t} + \nabla \cdot (\rho_f \nabla \phi) = \nabla \cdot [D_i \rho_f \phi \nabla c_i] - \Gamma_i
\]

\[\Gamma_i = \sum_1^M \nu_{im} R_m\] (Mass transfer term)

\(M\): Mineral phases
\(\nu_{im}\): Stoichiometric proportion of component \(i\) in mineral \(m\).
\(R_m\): Dissolution or precipitation rate
\(c_i\): Mass fraction (\(\sum_i c_i = 1\))
Mantle
(Aharonov et al., 1997a)

- Modes of melt extraction from mantle may be controlled by whether melt partially dissolve the surroundings or crystallize during upwelling
- Flow through an increasing solubility gradient causes dissolution with negative mass transfer from rock to fluid
- Flow through decreasing solubility gradient causes precipitation
- Transition zone: occurs near base of the conductively cooled lithosphere
 - Where it occurs depends on advective heat transfer – not included in the model
 - Calculations show that advective heat transfer will not distort a regional steady state geotherm until channels \(\ll 0.1\% \) of solid
 - Speculations that melt will pond in sills within transition zone
 - Increasing overpressure may lead to hydrofracturing
 - Precipitation faster in fractures than matrix according to simulation, since fractures are highest permeability channels → healing → cycle (consistent with presence of dikes)
Mantle
(Aharonov et al., 1995)

Table 1. Characteristic Values Believed to Be Applicable to Earth’s Mantle

<table>
<thead>
<tr>
<th>Variable</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solubility gradient</td>
<td>β</td>
<td>$2 \times 10^{-6} \text{ m}^{-1}$</td>
</tr>
<tr>
<td>Linear dissolution rate</td>
<td></td>
<td>$10^{-12} - 10^{-6} \text{ m s}^{-1}$</td>
</tr>
<tr>
<td>Solid density</td>
<td>ρ_s</td>
<td>$3 \times 10^3 \text{ kg m}^{-3}$</td>
</tr>
<tr>
<td>Reaction rate constant</td>
<td>R</td>
<td>$10^{-9} - 10^{-5} \text{ kg m}^{-2} \text{ s}^{-1}$</td>
</tr>
<tr>
<td>Grain edge length</td>
<td>d</td>
<td>$10^{-4} - 10^{-3} \text{ m}$</td>
</tr>
<tr>
<td>Total surface area</td>
<td></td>
<td>$10^3 - 10^5 \text{ m}^2 / \text{m}^3$</td>
</tr>
<tr>
<td>Porosity</td>
<td>ϕ</td>
<td>$10^{-3} - 10^{-2}$</td>
</tr>
<tr>
<td>Solid/liquid surface area</td>
<td>S</td>
<td>$(1 - 3) \times 10^{-1}$</td>
</tr>
<tr>
<td>Volume fraction of soluble phase</td>
<td></td>
<td>$10^{-2} - 10^{-1}$</td>
</tr>
<tr>
<td>Permeability exponent</td>
<td>n</td>
<td>$2 - 3$</td>
</tr>
<tr>
<td>Melt fraction</td>
<td>F</td>
<td>$0.05 - 0.2$</td>
</tr>
<tr>
<td>Solid upwelling rate</td>
<td>V_0</td>
<td>$10^{-10} - 10^{-9} \text{ m s}^{-1}$</td>
</tr>
<tr>
<td>Background fluid velocity</td>
<td>w_0</td>
<td>$10^{-9} - 10^{-6} \text{ m s}^{-1}$</td>
</tr>
<tr>
<td>Equilibration length</td>
<td>L_{eq}</td>
<td>$10^{-7} - 10 \text{ m}$</td>
</tr>
<tr>
<td>Damköhler number (L=100m)</td>
<td>Da</td>
<td>$10^9 - 1$</td>
</tr>
<tr>
<td>Diffusion coefficient</td>
<td>D</td>
<td>$10^{-12} - 10^{-10} \text{ m}^2 \text{ s}^{-1}$</td>
</tr>
<tr>
<td>Peclet number (L=100m)</td>
<td>Pe</td>
<td>$10^8 - 10^3$</td>
</tr>
<tr>
<td>compaction length</td>
<td>h</td>
<td>$100 - 1000 \text{ m}$</td>
</tr>
</tbody>
</table>
Mantle

- Diffusive porous flow of melt may be unstable in regions in the upper mantle where liquid ascends along an adiabatic PT gradient (like MOR and hot spots)

- Dissolution channels are observed as replacive dunites (cm – 100m scale)

- Dunites are formed by constant replacement of peridotite as a result of dissolution of pyroxene + crystallization of olivine in a liquid migration by porous flow through mantle

(Kelemen et al., 1995)