1. From the weak growth (damping) rate approximation, we have learned that the sign of γ is given by the sign of $\frac{\partial F_0(v_z = \omega/k)}{\partial v_z}$ (for positive k) and thus the wave is damped (stable) if the slope is negative, and it is amplified (unstable) if the slope is positive. This suggests that instability can happen only when $\frac{\partial F_0(v_z = \omega/k)}{\partial v_z} > 0$, and thus the distribution function $F_0(v_z)$ has more than a single hump.

2. This turns out to be true even without the weak growth rate approximation. This is called the Gardner’s theorem. In other words, Gardner’s theorem shows that a single-humped velocity distribution is stable.

3. However, a distribution having more than one hump is not necessarily unstable.

4. One way to see if instability can occur is to map the marginal stability line ($\gamma = 0$) on the complex p-plane onto the complex D-plane, where D is the dispersion function. If this closed contour encloses the $D = 0$ point, then it is unstable. Otherwise, it is stable. This is called the Nyquist criterion.

5. Applying the Nyquist criterion, one can derive an even simpler condition for instability:
$$\int_{-\infty}^{\infty} \frac{F_0(v_z) - F_0(V_j)}{(v_z - V_j)^2} dv_z > 0,$$
where $F_0(v_z)$ is a minimum at $v_z = V_j$. This is called the Penrose condition. On the other hand, the wave is stable if
$$\int_{-\infty}^{\infty} \frac{F_0(v_z) - F_0(V_j)}{(v_z - V_j)^2} dv_z < 0$$
for every V_j.