[DP1.019] Random Scattering and Anisotropic Turbulence of Shear-Alfvén Wave Packets in the Interstellar Medium and the Solar Wind

A. Bhattacharjee, C. S. Ng (Department of Physics and Astronomy, The University of Iowa.)

A theoretical model is given of anisotropic magnetohydrodynamic turbulence in the interstellar medium, motivated by recent observations which show significant deviations from the Kolmogorov power-law. Dimensional and heuristic arguments are given and critically assessed. On the basis of a weak turbulence approximation dominated by three-wave interactions, analytical and numerical results are given on the anisotropic spectrum produced by the random scattering of shear-Alfvén waves propagating parallel to the background magnetic field. The results show that the energy spectrum is proportional to k_{\perp}^{-2}, qualitatively consistent with some recent observations and wave kinetic theory.

Part D of program listing