Electrostatic Structures in Space Plasmas: Studies of Two-dimensional Magnetic Bernstein-Greene-Kruskal Modes

C. S. Ng and S. J. Soundararajan

Geophysical Institute, University of Alaska Fairbanks

Electrostatic structures have been observed in many regions of space plasmas, including the auroral acceleration region. One possible description of some of these structures is relating them to Bernstein-Greene-Kruskal (BGK) modes, which are exact solutions of the Vlasov equation. While there have been approximate solutions of higher dimensional BGK modes, a three-dimensional (3D) BGK mode in a finite magnetic field has not been constructed yet. We present here new studies of 2D BGK modes in a magnetized plasma with finite magnetic field strength in order to gain insights of the ultimate 3D theory. The original method of constructing these modes was presented in [Ng, Bhattacharjee, and Skiff, Phys. Plasmas 13, 055903 (2006)], which showed that these modes satisfy the exact electromagnetic Vlasov-Poisson-Ampere system. Exact solutions using a new method, as well as results on simulating these modes using Particle-in-Cell (PIC) simulations, which are important in studying the stability of these modes, will be presented.

This work is supported by a National Science Foundation grant PHY-1004357.